📝 Publications

JGR M&C
sym

Automatic differentiation‐based full waveform inversion with flexible workflows
Liu, F., Li, H., Zou, G., & Li, J. (2025)

🔗Code Repository: github.com/liufeng2317/ADFWI GitHub stars

  • ADFWI: A PyTorch-based full waveform inversion framework leveraging automatic differentiation.
  • Multi-Physics: Supports acoustic, elastic, and anisotropic wave propagation.
  • Multi-Workflow: Integrates diverse misfit functions, regularization methods, and optimizers for flexible inversion design.
  • Multi-Platform: Runs on both CPU and GPU with parallel computing support.
Arxiv
sym

Deep Reparameterization for Full Waveform Inversion: Architecture Benchmarking, Robust Inversion, and Multiphysics Extension (Version 2)
Liu, F., Li, Y., Su, R., Huang, J., & Bai, L. (2025)

🔗Code Repository: [github.com/liufeng2317/ADFWI] GitHub stars

  • DRFWI: A deep reparameterization framework for full waveform inversion (FWI).
  • Architecture Benchmarking: Evaluates CNNs, UNets, MLPs, and other architectures for model reparameterization.
  • Robustness: Assesses inversion performance under varying noise levels and sparse acquisition.
  • Multi-Physics Extension: Introduces a backbone-branch structure for multiparameter inversion, reducing cross-parameter interference.
JGR M&C
sym

DispFormer: A Pretrained Transformer Incorporating Physical Constraints for Dispersion Curve Inversion
Liu, F., Deng, B., Su, R., Bai, L., & Ouyang, W. (2025)

🔗Code Repository: github.com/liufeng2317/DispFormer GitHub stars

  • DispFormer: A pretrained transformer for flexible dispersion curve inversion, from global synthesis to regional applications.
  • Zero-shot: Directly inverts dispersion curves of arbitrary lengths without target-specific training.
  • Few-shot: Outperforms state-of-the-art global search methods with minimal training data.
  • Multi-Physics Extension: Easily adaptable to tasks like 1D electrical inversion, receiver function inversion, and multi-modal surface wave inversion.
GJI
sym

Multimodal surface wave inversion with automatic differentiation
Liu, F., Li, J., Fu, L., & Lu, L. (2024)

🔗Code Repository: github.com/liufeng2317/ADsurf GitHub stars

  • ADsurf: A PyTorch-based framework for multimodal surface wave inversion using automatic differentiation.
  • High-Performance: Optimized using GPU with parallel computing support (10x faster than CPU).
  • Uncertainty Quantification: Provides uncertainty estimates for inversion results.
Arxiv
sym

OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion
Liu, F., Zhao, S., Gu, X., Ling, F., Zhuang, P., Li, Y., Su, R., Fang, L., Zhou, L., Huang, J., & Bai, L. (2025)

🔗Code Repository: github.com/liufeng2317/OpenSWI GitHub stars

  • Massive-Scale: 22M shallow and 1.26M deep synthetic samples, plus real-world observations.
  • Comprehensive Coverage: From near-surface geology to deep Earth structures.
  • Benchmark Standard: Unified dataset for developing and evaluating AI-based inversion methods.
  • Open & Reproducible: Generated via the SWIDP pipeline and fully released with code and examples.

🎙 Geophysical Inversion

🎙 Seismic Monitoring

🎙 Remote Sensing